復習:単体法の2段解法による初期基本解の決定 制約式だけを見ると、

不等式制約では

maximize
$$600x_1 + 500x_2$$
 subject to $3x_1 + x_2 \le 45 \times 10^3$ $x_1 + 2x_2 \le 40 \times 10^3$ $x_1, x_2 \ge 0$

「全変数がゼロ」で制約式を 満たすことが判り易い

連立不等式に自明解=ゼロ があることを判断できる

等式標準形にすると、

minimize
$$-600x_1 - 500x_2$$
 subject to $3x_1 + x_2 + x_3 = 45 \times 10^3$ $x_1 + 2x_2 + x_4 = 40 \times 10^3$ $x_1, x_2, x_3, x_4 \ge 0$

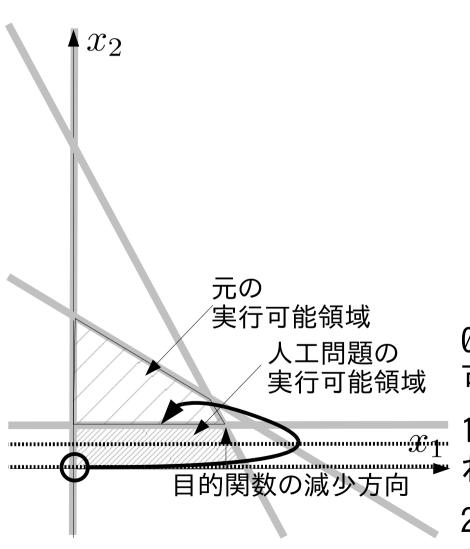
ゼロにする変数は *x*₃,*x*₄ 以外

*x*₃,*x*₄; 追加した変数?。○ だったら?

※各式に1つだけの変数

連立不等式の解が容易に求 まるように撰択している

復習:単体法の2段解法 2段解法のアイディア



maximize $600x_1 + 500x_2$ subject to $3x_1 + x_2 \le 45 \times 10^3$ $x_1 + 2x_2 \le 40 \times 10^3$ $x_2 \ge 10 \times 10^3$ $x_1, x_2 \ge 0$

- 0.制約式を変形し、原点が実行可能領域に含まれるようにする
- 1. 元の実行可能領域で最小化される目的関数を定める
- 2.1と2で作った人工問題を解き、元の問題の端点を求める

復習:単体法の2段解法

原点を実行可能領域外にする制約 =変数が負orゼロ

例:
$$x_2 - x_s = t > 0$$

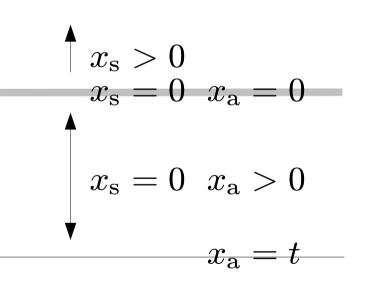
$$x_2 = 0 \rightarrow x_s = -t < 0$$

変数を追加して非負条件を満たす

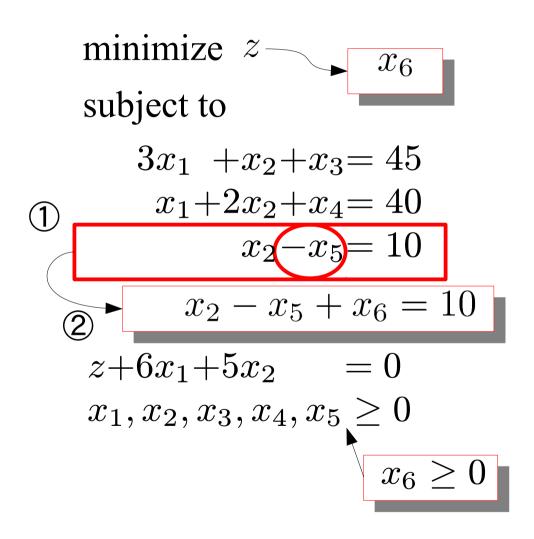
例:
$$x_2 - x_8 + x_a = t > 0$$

$$x_2=0 \rightarrow x_8=x_a-t$$

$$x_a > t > 0 \implies x_s = x_a - t > 0$$



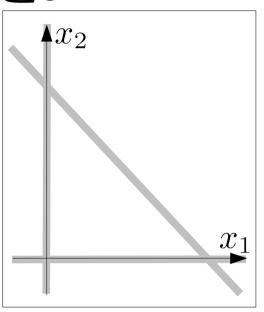
復習:単体法の2段解法



- 1.基<u>底変数の候補の係</u> 数が定数項と異なる符 号を持つ制約式を見つ ける①
- 2.1 の式に人工変数を加え新しい制約式を作る②
- 3.人工変数の総和を目的 関数とする最小化問題を 単体法を用いて解く
- 4.3 で得た最適値が0であれば、最適解を元の問題 の初期解として採用する

復習:演習問題5

minimize
$$z=x_1+2x_2$$
 subject to $x_1-x_2 \geq -1$ $x_1+x_2 \geq 1$ $x_1,x_2 \geq 0$



課題1: グラフを描き、原点が実行可能領域ではないことを確認する。

課題2:2段階 simplex 法の第1段階を用いて実行可能領域の端点を見つける。

復習:演習問題5

等式標準形 minimize zsubject to $x_1 + x_2 + x_3 = 1$ $x_1 + x_2 - x_4 = 1$ $z - x_1 - 2x_2 = 0$ $x_1, x_2, x_3, x_4 \ge 0$

人工問題
minimize
$$z(=x_5)$$
subject to
 $x_1+x_2+x_3=1$
 $x_1+x_2-x_4+x_5=1$
 $z-x_5=0$
 $x_1,x_2,x_3,x_4,x_5\geq 0$

課題1: グラフを描き、原点が実行可能領域ではないことを確認する。

課題2: 2段階 simplex 法の第1段階を用いて実行可能領域の端点を見つける。

復習:演習問題5

•人工問題の等式標準形からsimplex 表を準備する

人工問題
minimize
$$z(=x_5)$$
 $= -x_1 - x_2 + x_4 + 1$
subject to
 $x_1 + x_2 + x_3 = 1$
 $x_1 + x_2 - x_4 + x_5 = 1$
 $z + x_1 + x_2 - x_4 = 1$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

•simplex 表

X ₁	X 2	X 3	X 4	X 5	定数	最大増加量
1	1	1	0	0	1	
1	1	0	— 1	1	1	
1	1	0	—1	0	1	

復習:演習問題5

Z		X 1	X 2 非	X 3 非	X 4 非 X 5		定数
	0	1	1	1	O	0	1
	0	0	0	— 1	— 1	1	0
	1	0	0	— 1	— 1	0	0



• 最適解を得る

$$z = 0, x_1 = 1, x_2, x_3, x_4, x_5 = 0$$

• 最適値=0 なので、これを初期解に用いることができる

単体法の2段解法、適用の条件

```
等式標準形
minimize
z = -6x_1 + 6x_2
subject to
2x_1 + 3x_2 + x_3 = 6
-5x_1 + 9x_2 = 15
-6x_1 + 3x_2 - x_4 = 3
x_1, x_2, x_3, x_4 \ge 0
```

```
人工問題の等式標準形 minimize z subject to 2x_1 + 3x_2 + x_3 = 6 -5x_1 + 9x_2 + x_5 = 15 -6x_1 + 3x_2 - x_4 + x_6 = 3 z - 11x_1 + 12x_2 - x_4 = 18 x_1, x_2, x_3, x_4, x_5, x_6 \ge 0
```

- ① 係数が1の変数がなく定数項がゼロでない
- ② x4の係数と定数項で符号が異なる
- →「x4を基底変数、それ以外を非基底変数」とすると、非 負条件を満たせない。→2段解法を利用する

初期のsimplex表

Z	,	X₁ 非	X ₂ 非	X 3	<i>X</i> 4 非	X 5	X 6	定数	最大増加量
	0	2	3	1	0	0	0	6	
	0	-5	9	0	0	1	0	15	
	0	-6	3	0	-1	0	1	3	
	1	-11	12	0	-1	0	0	18	

• 1段目終了時のsimplex表

Z	X ₁	X 2	<i>x</i> ₃ 非	X 4	<i>X</i> ₅ 非	X 6 非	定数	最大増加量
C	1	0	3/11	0	-1/11	0	3/11	
C	0	0	-13/11	1	8/11	-1	9/11	
C	0	1	5/33	0	0	0	20/11	
1	0	0	0	0	-1	-1	0	

• 人工問題の最適解

$$(z, x_1, x_2, x_3, x_4, x_5, x_6) = (0, 3/11, 20/11, 0, 9/11, 0, 0)$$

• 1段目終了後の解法はどう進めるのか?

• 人工問題の最適解から人工変数を除けば、

$$(x_1, x_2, x_3, x_4) = (3/11, 20/11, 0, 9/11)$$

基底変数: x_1, x_2, x_4 非基底変数: x_3

等式標準形 minimize
$$z = -6x_1 + 6x_2$$
 subject to $2x_1 + 3x_2 + x_3 = 6$ $-5x_1 + 9x_2 = 15$ $-6x_1 + 3x_2 - x_4 = 3$ $x_1, x_2, x_3, x_4 \ge 0$

基底変数の連立方程式
$$2x_1+3x_2 = 6$$

$$-5x_1+9x_2 = 15$$

$$-6x_1+3x_2-x_4=3$$
の解は、人工問題の最適解
$$x_1 = 3/11$$

$$x_2 = 20/11$$

$$x_4 = 9/11$$

• 基底変数を x_1, x_2, x_4 非基底変数を x_3 として、単体法の手順を開始すれば良い

• 基底変数: x_1, x_2, x_4 非基底変数: x_3 元の等式標準形からsimplex表を作る

Z	X 1	X 2	X₃ 非	X 4	定数	最大増加量
C	2	3	1	0	6	
C	-5	9	0	0	15	
C	-6	3	0	-1	3	
1	6	-6	0	0	0	

• 一度連立方程式を解いて、基本解を得る

Z	X ₁	X 2	X₃ 非	X 4	定数
0	1	0	3/11	0	3/11
0	0	1	5/33	0	20/11
0	0	0	-13/11	1	9/11
1	0	0	-8/11	0	102/11

• (この例では)非基底変数の係数が全て負なので最適解

• 元の標準形まで戻らなくても、 人工問題の最終段階の simplex 表を削って

Z	X 1	X 2	x₃ 非	X 4	X 5	X 6	定数	最大増加量
) 1	0	3/11	0	-1/11	0	3/11	
) (0	-13/11	1	8/11	-1	9/11	
) () 1	5/33	0	0	0	20/11	
	1 (0	0	0	-1	-1	0	

基本解を得ることができる

Z	X ₁	X 2	X₃ 非	X 4	定数
0	1	0	3/11	0	3/11
0	0	0	-13/11	1	9/11
0	0	1	5/33	0	20/11

zの行は?

• 元の標準形まで戻らなくても、 人工問題の最終段階の simplex 表を削って 基本解を得ることができる

Z	X 1	X 2	<i>X</i> ₃ 非	X 4	定数
0	1	0	3/11	0	3/11
0	0	0	-13/11	1	9/11
0	0	1	5/33	0	20/11

• 目的関数値の段は、定義より計算
$$z = -6x_1 + 6x_2 = -6(-\frac{3}{11}x_3 + \frac{3}{11}) + 6(-\frac{5}{33}x_3 + \frac{20}{11})$$

$$= \frac{8}{11}x_3 + \frac{102}{11}$$

Z	X 1	X 2	<i>X</i> ₃ 非	X 4	定数
1	0	0	-8/11	0	102/11

非基底変数の係数が全て負なので最適解

- 2段階単体法(2stage simplex method)
- 第1段階:初期基底解を求めるための線形計画問題を解く
- ・元の問題の等式標準形に以下の操作を施し人工問題を作る。(1)基底変数候補の係数が正でない制約式に人工変数を加える(2)人工変数の総和から成る人工目的関数を定める
- ・人工問題の最適解を単体法を用いて求める
- ※初期基底変数はsimplex表の目的関数から消去しておく ※最適値が 0 ならば元の問題の初期基本解として利用できる
- 第2段階:元の問題と同等の線形計画問題を解く
- ・最終段階のsimplex表から人工変数を取り除き、元の目的関数の定義と併せて元の問題のsimplex表を作り単体法を適用する
- ※初期基底変数はsimplex表の目的関数から消去しておく ※補助問題のsimplex表に目的関数の行を加えて利用する

演習

次の線形計画問題のグラフを描き、原点が実行可能領域でないことを確認のうえ、単体法の2段解法を用いて最適解を求めよ

maximize
$$z = x_1 + 2x_2$$

subject to
 $x_1 + x_2 \le 2$
 $x_1 + x_2 \ge 1$
 $x_1, x_2 \ge 0$

